24 research outputs found

    Energy-Constrained Delivery of Goods with Drones Under Varying Wind Conditions

    Full text link
    In this paper, we study the feasibility of sending drones to deliver goods from a depot to a customer by solving what we call the Mission-Feasibility Problem (MFP). Due to payload constraints, the drone can serve only one customer at a time. To this end, we propose a novel framework based on time-dependent cost graphs to properly model the MFP and tackle the delivery dynamics. When the drone moves in the delivery area, the global wind may change thereby affecting the drone's energy consumption, which in turn can increase or decrease. This issue is addressed by designing three algorithms, namely: (i) compute the route of minimum energy once, at the beginning of the mission, (ii) dynamically reconsider the most convenient trip towards the destination, and (iii) dynamically select only the best local choice. We evaluate the performance of our algorithms on both synthetic and real-world data. The changes in the drone's energy consumption are reflected by changes in the cost of the edges of the graphs. The algorithms receive the new costs every time the drone flies over a new vertex, and they have no full knowledge in advance of the weights. We compare them in terms of the percentage of missions that are completed with success (the drone delivers the goods and comes back to the depot), with delivered (the drone delivers the goods but cannot come back to the depot), and with failure (the drone neither delivers the goods nor comes back to the depot).Comment: typo author's nam

    Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking for Disaster Response

    Get PDF
    In a Disaster Response Management (DRM) Scenario, Communication and Coordination Are Limited, and Absence of Related Infrastructure Hinders Situational Awareness. Unmanned Aerial Vehicles (UAVs) or Drones Provide New Capabilities for DRM to Address These Barriers. However, There is a Dearth of Works that Address Multiple Heterogeneous Drones Collaboratively Working Together to Form a Flying Ad-Hoc Network (FANET) with Air-To-Air and Air-To-Ground Links that Are Impacted By: (I) Environmental Obstacles, (Ii) Wind, and (Iii) Limited Battery Capacities. in This Paper, We Present a Novel Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking Scheme that Features a Reinforcement Learning (RL) based Location Prediction Algorithm Coupled with a Packet Forwarding Algorithm for Drone-To-Ground Network Establishment. We Specifically Present Two Novel Drone Location-Based Solutions (I.e., Heuristic Greedy, and Learning-Based) in Our Packet Forwarding Approach to Support Application Requirements. These Requirements Involve Improving Connectivity (I.e., Optimize Packet Delivery Ratio and End-To-End Delay) Despite Environmental Obstacles, and Improving Efficiency (I.e., by Lower Energy Use and Time Consumption) Despite Energy Constraints. We Evaluate Our Scheme with State-Of-The-Art Networking Algorithms in a Trace-Based DRM FANET Simulation Testbed Featuring Rural and Metropolitan Areas. Results Show that Our Strategy overcomes Obstacles and Can Achieve 81-To-90% of Network Connectivity Performance Observed under No Obstacle Conditions. in the Presence of Obstacles, Our Scheme Improves the Network Connectivity Performance by 14-To-38% While Also Providing 23-To-54% of Energy Savings in Rural Areas; the Same in Metropolitan Areas Achieved an Average of 25% Gain When Compared with Baseline Obstacle Awareness Approaches with 15-To-76% of Energy Savings

    Optimal Routing Schedules for Robots Operating in Aisle-Structures

    Full text link
    In this paper, we consider the Constant-cost Orienteering Problem (COP) where a robot, constrained by a limited travel budget, aims at selecting a path with the largest reward in an aisle-graph. The aisle-graph consists of a set of loosely connected rows where the robot can change lane only at either end, but not in the middle. Even when considering this special type of graphs, the orienteering problem is known to be NP-hard. We optimally solve in polynomial time two special cases, COP-FR where the robot can only traverse full rows, and COP-SC where the robot can access the rows only from one side. To solve the general COP, we then apply our special case algorithms as well as a new heuristic that suitably combines them. Despite its light computational complexity and being confined into a very limited class of paths, the optimal solutions for COP-FR turn out to be competitive even for COP in both real and synthetic scenarios. Furthermore, our new heuristic for the general case outperforms state-of-art algorithms, especially for input with highly unbalanced rewards

    Dispatching Point Selection For A Drone-based Delivery System Operating In A Mixed Euclidean–Manhattan Grid

    Get PDF
    In this paper, we present a drone-based delivery system that assumes to deal with a mixed-area, i.e., two areas, one rural and one urban, placed side-by-side. In the mixed-areas, called EM-grids, the distances are measured with two different metrics, and the shortest path between two destinations concatenates the Euclidean and Manhattan metrics. Due to payload constraints, the drone serves a single customer at a time returning back to the dispatching point (DP) after each delivery to load a new parcel for the next customer. In this paper, we present the 1 -Median Euclidean–Manhattan grid Problem (MEMP) for EM-grids, whose goal is to determine the drone\u27s DP position that minimizes the sum of the distances between all the locations to be served and the point itself. We study the MEMP on two different scenarios, i.e., one in which all the customers in the area need to be served (full-grid) and another one where only a subset of these must be served (partial-grid). For the full-grid scenario we devise optimal and approximation algorithms, while for the partial-grid scenario we devise an optimal algorithm

    A Drone-Based Application for Scouting Halyomorpha Halys Bugs in Orchards with Multifunctional Nets

    Get PDF
    In this work, we consider the problem of using a drone to collect information within orchards in order to scout insect pests, i.e., the stink bug Halyomorpha halys. An orchard can be modeled as an aisle-graph, which is a regular and constrained data structure formed by consecutive aisles where trees are arranged in a straight line. For monitoring the presence of bugs, a drone flies close to the trees and takes videos and/or pictures that will be analyzed offline. As the drone\u27s energy is limited, only a subset of locations in the orchard can be visited with a fully charged battery. Those places that are most likely to be infested should be selected to promptly detect the pest. We implemented the proposed approach on a DJI drone and evaluated its performance in the real-world environment

    Heuristic algorithms for co-scheduling of edge analytics and routes for UAV fleet missions

    No full text
    Unmanned Aerial Vehicles (UAVs) or drones are increasingly used for urban applications like traffic monitoring and construction surveys. Autonomous navigation allows drones to visit waypoints and accomplish activities as part of their mission. A common activity is to hover and observe a location using on-board cameras. Advances in Deep Neural Networks (DNNs) allow such videos to be analyzed for automated decision making. UAVs also host edge computing capability for on-board inferencing by such DNNs. To this end, for a fleet of drones, we propose a novel Mission Scheduling Problem (MSP) that co-schedules the flight routes to visit and record video at waypoints, and their subsequent on-board edge analytics. The proposed schedule maximizes the utility from the activities while meeting activity deadlines as well as energy and computing constraints. We first prove that MSP is NP-hard and then optimally solve it by formulating a mixed integer linear programming (MILP) problem. Next, we design two efficient heuristic algorithms, jsc and vrc, that provide fast sub-optimal solutions. Evaluation of these three schedulers using real drone traces demonstrate utility-runtime trade-offs under diverse workloads

    Localization with guaranteed bound on the position error using a drone

    No full text
    In this paper, we study the sensor localization problem using a drone. Our goal is to localize each sensor in the deploy- ment area ensuring a predefined localization precision, i.e., a bound on the position error, whatever is the drone's al- titude. We show how to guarantee a-priori the precision localization by satisfying few conditions. Such conditions are totally novel aspects that have not been considered in previous localization algorithms. In the new localization technique, we first determine the minimum ground distance that guarantees the predefined bound on the position error. According to that distance, a static path for the drone is designed. Then, the localization mission proceeds in two steps: Initially, the drone computes a rough estimation of the sensor position by using the first three distance measurements it can take greater than the minimum ground distance. Next the position is refined by employing three distance measurements that, in addition to the minimum ground distance, satisfy a specific geometric layout. In this way, the localization precision is guaranteed with just three measurements
    corecore